Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nutr Clin Pract ; 39 Suppl 1: S17-S28, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38429962

RESUMO

Fat malabsorption is central to the pathophysiology of short bowel syndrome (SBS). It occurs in patients with insufficient intestinal surface area and/or function to maintain metabolic and growth demands. Rapid intestinal transit and impaired bile acid recycling further contribute to fat malabsorption. A significant portion of patients require parenteral nutrition (PN) for their survival but may develop sepsis and liver dysfunction as a result. Despite advancements in the treatment of SBS, fat malabsorption remains a chronic issue for this vulnerable patient population. Peer-reviewed literature was assessed on the topic of fat malabsorption in SBS. Current management of patients with SBS involves dietary considerations, PN management, antidiarrheals, glucagon-like peptide 2 agonists, and multidisciplinary teams. Clinical trials have focused on improving intestinal fat absorption by facilitating fat digestion with pancreatic enzymes. Targeting fat malabsorption in SBS is a potential pathway to improving lifestyle and reducing morbidity and mortality in this rare disease.


Assuntos
Síndrome do Intestino Curto , Humanos , Síndrome do Intestino Curto/complicações , Síndrome do Intestino Curto/terapia , Intestinos , Nutrição Parenteral , Absorção Intestinal , Dieta
2.
Am J Physiol Lung Cell Mol Physiol ; 326(3): L213-L225, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38113296

RESUMO

Neonates with congenital diaphragmatic hernia (CDH) frequently require cardiopulmonary bypass and systemic anticoagulation. We previously demonstrated that even subtherapeutic heparin impairs lung growth and function in a murine model of compensatory lung growth (CLG). The direct thrombin inhibitors (DTIs) bivalirudin and argatroban preserved growth in this model. Although DTIs are increasingly used for systemic anticoagulation clinically, patients with CDH may still receive heparin. In this experiment, lung endothelial cell proliferation was assessed following treatment with heparin-alone or mixed with increasing concentrations of bivalirudin or argatroban. The effects of subtherapeutic heparin with or without DTIs in the CLG model were also investigated. C57BL/6J mice underwent left pneumonectomy and subcutaneous implantation of osmotic pumps. Pumps were preloaded with normal saline, bivalirudin, or argatroban; treated animals received daily intraperitoneal low-dose heparin. In vitro, heparin-alone decreased endothelial cell proliferation and increased apoptosis. The effect of heparin on proliferation, but not apoptosis, was reversed by the addition of bivalirudin and argatroban. In vivo, low-dose heparin decreased lung volume compared with saline-treated controls. All three groups that received heparin demonstrated decreased lung function on pulmonary function testing and impaired exercise performance on treadmill tolerance testing. These findings correlated with decreases in alveolarization, vascularization, angiogenic signaling, and gene expression in the heparin-exposed groups. Together, these data suggest that bivalirudin and argatroban fail to reverse the inhibitory effects of subtherapeutic heparin on lung growth and function. Clinical studies on the impact of low-dose heparin with DTIs on CDH outcomes are warranted.NEW & NOTEWORTHY Infants with pulmonary hypoplasia frequently require cardiopulmonary bypass and systemic anticoagulation. We investigate the effects of simultaneous exposure to heparin and direct thrombin inhibitors (DTIs) on lung growth and pulmonary function in a murine model of compensatory lung growth (CGL). Our data suggest that DTIs fail to reverse the inhibitory effects of subtherapeutic heparin on lung growth and function. Clinical studies on the impact of heparin with DTIs on clinical outcomes are thus warranted.


Assuntos
Antitrombinas , Arginina/análogos & derivados , Heparina , Ácidos Pipecólicos , Sulfonamidas , Humanos , Animais , Camundongos , Heparina/farmacologia , Heparina/uso terapêutico , Antitrombinas/farmacologia , Antitrombinas/uso terapêutico , Anticoagulantes/uso terapêutico , Pneumonectomia , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Hirudinas/farmacologia , Fibrinolíticos , Pulmão/metabolismo , Fragmentos de Peptídeos/farmacologia , Proteínas Recombinantes/farmacologia , Trombina/farmacologia , Trombina/metabolismo
3.
Cell Rep Methods ; 3(10): 100613, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37827157

RESUMO

In newborns, developmental disorders such as congenital diaphragmatic hernia (CDH) and specific types of congenital heart disease (CHD) can lead to defective alveolarization, pulmonary hypoplasia, and pulmonary arterial hypertension (PAH). Therapeutic options for these patients are limited, emphasizing the need for new animal models representative of disease conditions. In most adult mammals, compensatory lung growth (CLG) occurs after pneumonectomy; however, the underlying relationship between CLG and flow-induced pulmonary hypertension (PH) is not fully understood. We propose a murine model that involves the simultaneous removal of the left lung and right caval lobe (extended pneumonectomy), which results in reduced CLG and exacerbated reproducible PH. Extended pneumonectomy in mice is a promising animal model to study the cellular response and molecular mechanisms contributing to flow-induced PH, with the potential to identify new treatments for patients with CDH or PAH-CHD.


Assuntos
Hérnias Diafragmáticas Congênitas , Hipertensão Pulmonar , Humanos , Recém-Nascido , Camundongos , Animais , Pneumonectomia , Hipertensão Pulmonar/etiologia , Pulmão/cirurgia , Hérnias Diafragmáticas Congênitas/cirurgia , Mamíferos
4.
JPEN J Parenter Enteral Nutr ; 47(8): 1028-1037, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37726175

RESUMO

BACKGROUND: Enteral drug therapy is challenging in short bowel syndrome with intestinal failure (SBS-IF) because of unpredictable absorption. SEFA-6179 is an enterally administered medium-chain fatty acid analogue under development for intestinal failure-associated liver disease. We investigate the pharmacokinetics of two SEFA-6179 formulations in two large-animal models of SBS-IF, including a new pseudojejunostomy model. METHODS: Twenty Yucatan minipigs were obtained. Half underwent pre-resection pharmacokinetic study with single-dose SEFA-6179 administration. All minipigs then underwent 90% jejunoileal resection, with either a jejunoileal anastomosis or bypass of the intraperitoneal colon with anastomosis just proximal to the rectum (pseudojejunostomy). On postoperative day 3, a single-dose pharmacokinetic study was performed. RESULTS: Both SBS-IF models were well tolerated. Compared with the jejunoileal anastomosis minipigs, pseudojejunostomy minipigs had a more severe malabsorptive phenotype with weight loss by postoperative day 4 (+0.1 vs -0.9 kg, P = 0.03) and liquid diarrhea (Bristol 5 vs Bristol 7, P = 0.0007). Compared with pre-resection minipigs, both jejunoileal and pseudojejunostomy minipigs had lower total plasma exposure of SEFA-6179 measured by area under the curve (jejunoileal: 37% less, P = 0.049; pseudojejunostomy: 74% less, P = 0.0001). Peak plasma concentration was also lower in the pseudojejunostomy group compared with pre-resection (65% less, P = 0.04), but not lower in the jejunoileal group (P = 0.47). CONCLUSION: In two SBS-IF minipig models, SEFA-6179 had substantially decreased absorption compared with pre-resection minipigs. Dose optimization for different intestinal anatomy and function may be required. We describe a new SBS-IF pseudojejunostomy model that may improve the translation of preclinical research to patients with SBS-IF who have enterostomies.


Assuntos
Enteropatias , Insuficiência Intestinal , Síndrome do Intestino Curto , Animais , Humanos , Suínos , Síndrome do Intestino Curto/cirurgia , Síndrome do Intestino Curto/tratamento farmacológico , Porco Miniatura , Intestinos , Ácidos Graxos , Modelos Animais de Doenças
5.
JBMR Plus ; 6(1): e10572, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35079680

RESUMO

The relationship between the active form of vitamin D3 (1,25-dihydroxyvitamin D, 1,25(OH)2D) and reactive oxygen species (ROS), two integral signaling molecules of the cell, is poorly understood. This is striking, given that both factors are involved in cancer cell regulation and metabolism. Mitochondria (mt) dysfunction is one of the main drivers of cancer, producing more mitochondria, higher cellular energy, and ROS that can enhance oxidative stress and stress tolerance responses. To study the effects of 1,25(OH)2D on metabolic and mt dysfunction, we used the vitamin D receptor (VDR)-sensitive MG-63 osteosarcoma cell model. Using biochemical approaches, 1,25(OH)2D decreased mt ROS levels, membrane potential (ΔΨmt), biogenesis, and translation, while enforcing endoplasmic reticulum/mitohormetic stress adaptive responses. Using a mitochondria-focused transcriptomic approach, gene set enrichment and pathway analyses show that 1,25(OH)2D lowered mt fusion/fission and oxidative phosphorylation (OXPHOS). By contrast, mitophagy, ROS defense, and epigenetic gene regulation were enhanced after 1,25(OH)2D treatment, as well as key metabolic enzymes that regulate fluxes of substrates for cellular architecture and a shift toward non-oxidative energy metabolism. ATACseq revealed putative oxi-sensitive and tumor-suppressing transcription factors that may regulate important mt functional genes such as the mTORC1 inhibitor, DDIT4/REDD1. DDIT4/REDD1 was predominantly localized to the outer mt membrane in untreated MG-63 cells yet sequestered in the cytoplasm after 1,25(OH)2D and rotenone treatments, suggesting a level of control by membrane depolarization to facilitate its cytoplasmic mTORC1 inhibitory function. The results show that 1,25(OH)2D activates distinct adaptive metabolic responses involving mitochondria to regain redox balance and control the growth of osteosarcoma cells. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

6.
Front Mol Biosci ; 9: 1093369, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36601582

RESUMO

Lung endothelial cells comprise the pulmonary vascular bed and account for the majority of cells in the lungs. Beyond their role in gas exchange, lung ECs form a specialized microenvironment, or niche, with important roles in health and disease. In early development, progenitor ECs direct alveolar development through angiogenesis. Following birth, lung ECs are thought to maintain their regenerative capacity despite the aging process. As such, harnessing the power of the EC niche, specifically to promote angiogenesis and alveolar regeneration has potential clinical applications. Here, we focus on translational research with applications related to developmental lung diseases including pulmonary hypoplasia and bronchopulmonary dysplasia. An overview of studies examining the role of ECs in lung regeneration following acute lung injury is also provided. These diseases are all characterized by significant morbidity and mortality with limited existing therapeutics, affecting both young children and adults.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...